Combinatorial Results on Directed Hypergraphs for the SAT Problem
نویسندگان
چکیده
Directed hypergraphs have already been shown to unveil several combinatorial inspired results for the SAT problem. In this paper we approach the SAT problem by searching a transversal of the directed hypergraphs associated to its instance. We introduce some particular clause orderings and study their influence on the backtrack process, exhibiting a new subclass of CNF for which SAT is polynomial. Based on unit resolution and a novel dichotomous search, a new DPLL-like algorithm and a renaming-based combinatorial approach are proposed. We then investigate the study of weak transversals in this setting and reveal a new degree of a CNF formula unsatisfiability and a structural result about unsatisfiable formulae.
منابع مشابه
Directed domination in oriented hypergraphs
ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been g...
متن کاملHypergraph Acyclicity and Propositional Model Counting
We show that the propositional model counting problem #SAT for CNFformulas with hypergraphs that allow a disjoint branches decomposition can be solved in polynomial time. We show that this class of hypergraphs is incomparable to hypergraphs of bounded incidence cliquewidth which were the biggest class of hypergraphs for which #SAT was known to be solvable in polynomial time so far. Furthermore,...
متن کاملLinear CNF formulas and satisfiability
In this paper, we study linear CNF formulas generalizing linear hypergraphs un-der combinatorial and complexity theoretical aspects w.r.t. SAT. We establish NP-completeness of SAT for the unrestricted linear formula class, and we show the equiv-alence of NP-completeness of restricted uniform linear formula classes w.r.t. SATand the existence of unsatisfiable uniform linear witne...
متن کاملOn the orientation of graphs and hypergraphs
Graph orientation is a well-studied area of combinatorial optimization, one that provides a link between directed and undirected graphs. An important class of questions that arise in this area concerns orientations with connectivity requirements. In this paper we focus on how similar questions can be asked about hypergraphs, and we show that often the answers are also similar: many known graph ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015